Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant Acinetobacter baumannii global clone 1
نویسندگان
چکیده
The majority of Acinetobacter baumannii isolates that are multiply, extensively and pan-antibiotic resistant belong to two globally disseminated clones, GC1 and GC2, that were first noticed in the 1970s. Here, we investigated microevolution and phylodynamics within GC1 via analysis of 45 whole-genome sequences, including 23 sequenced for this study. The most recent common ancestor of GC1 arose around 1960 and later diverged into two phylogenetically distinct lineages. In the 1970s, the main lineage acquired the AbaR resistance island, conferring resistance to older antibiotics, via a horizontal gene transfer event. We estimate a mutation rate of ∼5 SNPs genome- 1 year- 1 and detected extensive recombination within GC1 genomes, introducing nucleotide diversity into the population at >20 times the substitution rate (the ratio of SNPs introduced by recombination compared with mutation was 22). The recombination events were non-randomly distributed in the genome and created significant diversity within loci encoding outer surface molecules (including the capsular polysaccharide, the outer core lipooligosaccharide and the outer membrane protein CarO), and spread antimicrobial resistance-conferring mutations affecting the gyrA and parC genes and insertion sequence insertions activating the ampC gene. Both GC1 lineages accumulated resistance to newer antibiotics through various genetic mechanisms, including the acquisition of plasmids and transposons or mutations in chromosomal genes. Our data show that GC1 has diversified into multiple successful extensively antibiotic-resistant subclones that differ in their surface structures. This has important implications for all avenues of control, including epidemiological tracking, antimicrobial therapy and vaccination.
منابع مشابه
Corrected Genome Sequence of Acinetobacter baumannii Strain AB0057, an Antibiotic-Resistant Isolate from Lineage 1 of Global Clone 1
Extensively antibiotic-resistant Acinetobacter baumannii isolate AB0057 recovered in the United States in 2004 was one of the first global clone 1 isolates to be completely sequenced. Here, the complete 4.05-Mb genome sequence (chromosome and one plasmid) has been revised using Illumina HiSeq data and targeted sequencing of PCR products.
متن کاملGenome Sequence of Acinetobacter baumannii Strain D36, an Antibiotic-Resistant Isolate from Lineage 2 of Global Clone 1
Multiply antibiotic-resistant Acinetobacter baumannii isolate D36 was recovered in Australia in 2008 and belongs to a distinct lineage of global clone 1 (GC1). Here, we present the complete 4.13 Mbp genome sequence (chromosome plus 4 plasmids), generated via long read sequencing (PacBio).
متن کاملEvolution of AbaR-type genomic resistance islands in multiply antibiotic-resistant Acinetobacter baumannii.
OBJECTIVES To determine if members of the European clonal lineages are present amongst multiply antibiotic-resistant Acinetobacter baumannii isolates from Australia. To search for AbaR-type genomic antibiotic resistance islands and determine the genetic organization of any AbaR detected. METHODS Two groups of multiply antibiotic-resistant A. baumannii strains isolated between 2002 and 2007 at...
متن کاملGenome Sequence of Acinetobacter baumannii Strain A1, an Early Example of Antibiotic-Resistant Global Clone 1
Acinetobacter baumannii isolate A1 was recovered in the United Kingdom in 1982 and belongs to global clone 1 (GC1). Here, we present its complete 3.91-Mbp genome sequence, generated via a combination of short-read sequencing (Illumina), long-read sequencing (PacBio), and manual finishing.
متن کاملComparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone
The emergence of extreme-drug-resistant (EDR) bacterial strains in hospital and nonhospital clinical settings is a big and growing public health threat. Understanding the antibiotic resistance mechanisms at the genomic levels can facilitate the development of next-generation agents. Here, comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016